Supplementary Manual 3 - Contributing to the COBRA Toolbox
using git

A CRITICAL STEP This supplementary information is tailored to users who feel comfortable using
the terminal (or shell). It is recommended for other users to use the MATLAB.devTools described in
Steps 97-102. A Github account is required and g¢it must be installed. You also must already have forked
the opencobra/cobratoolbox repository by clicking on the fork button on the main opencobra/cobratoolbox
repository page.

The repository of the COBRA Toolbox is version controlled with the open-source standard git on the
public code development site https://github.com. Any incremental change to the code is wrapped in
a commit, tagged with a specific tag (called SHA1), a commit message, and author information, such as
the email address and the user name. Contributions to the COBRA Toolbox are consequently commits
that are made on branches.

The development scheme adopted in the repository of the COBRA Toolbox has 2 branches: a master and
a develop branch. The stable branch is the master branch, while it is the develop branch that includes
all new features and to which new contributions are merged. Contributions are submitted for review and
testing through pull requests, the git standard. The develop branch is regularly merged into the master
branch once testing is concluded. The development scheme has been adopted for obvious reasons: the
COBRA Toolbox is heavily used on a daily basis, while the development community is active. The key
advantage of this setup is that developers can work on the next stable release, while users can enjoy a
stable version. Developers and users are consequently working on the same code base without interfering.
Understanding the concept of branches is key to submitting hassle-free pull requests and starting to
contribute using git.

! CAUTION The following commands should only be run from the terminal (or the shell). An SSH key
must be set in your Github account settings.

In order to get started, clone the forked repository:
$ git clone git@github.com:<username>/cobratoolbox.git fork-cobratoolbox

This will create a folder called fork-cobratoolbox. Make sure to replace <username> with your Github
username. Any of the following commands are meant to be run from within the folder of the fork called
fork-cobratoolboz.

$ cd fork-cobratoolbox
In order to complete the cloned repository with external code, it is recommended to clone all submodules:
$ git submodule update --init

Note that your fork is a copy of the opencobra/cobratoolbox repository and is not automatically updated.
As such, you have to configure the address of the opencobra/cobratoolbox repository:

$ git remote add upstream git@github.com:opencobra/cobratoolbox.git

Now, there are two addresses (also called remotes) configured: origin and upstream. You can verify this
by typing:

$ git remote -v

In order to update your fork, run the following commands:

$ git fetch upstream

First, update the master branch:

$ git checkout master # checkout the <master> branch locally
$ git merge upstream/master # merge the changes from the upstream repository
$ git push origin master # push the changes to the <master> branch of the fork

Then, update the develop branch

$ git checkout develop # checkout the <develop> branch
$ git merge upstream/develop # merge the changes from the upstream repository
$ git push origin develop # push the changes to the <develop> branch of the fork

7?TROUBLESHOOTING Should the step fail to checkout the develop branch, you should create the
develop branch first based on the develop branch of the upstream repository:

$ git checkout -b develop upstream/develop

Create a contribution and submit a pull request

Now, as the fork is up-to-date with the upstream repository, start a new contribution. A new contribution
must be made on a new branch, that originates from the develop branch. Create the new branch:


https://github.com

$ git checkout -b <myBranch> develop

Now, you can make changes in the folder fork-cobratoolbox. Once you are done making changes, you can
contribute the files. An important command that lists all changes is to retrieve the repository status:

$ git status

A list is displayed with new, modified, and deleted files. You can add the changes (even deletions) by
adding the file:

$ git add <fileName>.<fileExtension>

A CRITICAL STEP Contrary to what is sometimes provided as a shortcut, it is not advised to add
all files all at once using as this command will add all files, even hidden files and binaries.

$ git add . # bad practice

Then, commit the changes by setting a commit message <yourMessage>:
$ git commit -m "<myMessage>"

Finally, push your commit to Github:

$ git push origin <myBranch>

You should then see your commit online, and if ready, you can open a pull request. You can select your
branch in the dropdown menu and list all commits by clicking on COMMITS.

Continue working on your branch after a while (rebase) If there have been major changes or
if you want to continue working on a branch after a while, it is recommended to do a rebase. In simple
terms, rebasing your branch shifts your commits to the top of the branch and includes all changes from
the upstream repository. Before doing so, make sure that you do not have any uncommitted or local
changes (git status).

git checkout develop

git fetch upstream

git merge upstream/develop

git submodule update

git checkout <myBranch>
git rebase develop
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If you do not have any conflicts, you should see messages showing that your changes have been applied.

If however there are conflicts, it is advised to use a merge tool such as kdiff3. In order to install a merge
tool or abort the rebase process, type:

$ git rebase --abort

In order to have the changes on <myBranch> reflected in the online repository, push the changes with
force. Pushing with force is required as the history of the branch has been rewritten during rebase.

$ git push <myBranch> --force

Selectively use a commit on your branch (cherry-pick) Imagine having two branches called
<myBranch-1> and <myBranch-2>. On branch <myBranch-1> is a commit with a SHA1 that you
need on <myBranch-2>. You can cherry-pick the commit from <myBranch-1> to <myBranch-2> by
typing:

$ git checkout myBranch-2

$ git cherry-pick SHA1

If there are no conflicts, the displayed message should contain the commit message and author information.
In order to have the commit listed online, conclude the cherry-pick by pushing the commit to the remote
repository:

$ git push myBranch-2

Displaying the history of a file Sometimes, the history of a file is not correctly displayed online.
You can however display the history by typing:

$ git log --follow --pretty=short <fileName>.<fileExtension>
You can exit the screen by typing the letter q.

When the MATLAB.devTools are installed, you can also display the history of a file from within MAT-
LAB:

>> history('fileName.fileExtension')
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